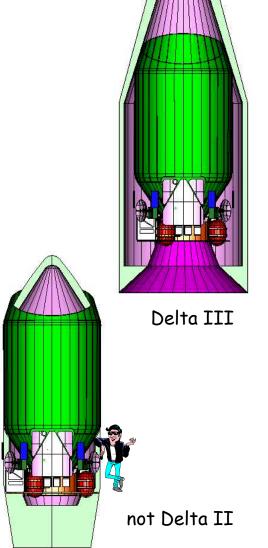


SNAP Engineering Overview

David Pankow

Space Sciences Laboratory, also campus M. E. Department University of California Berkeley

SNAP Engineering Overview



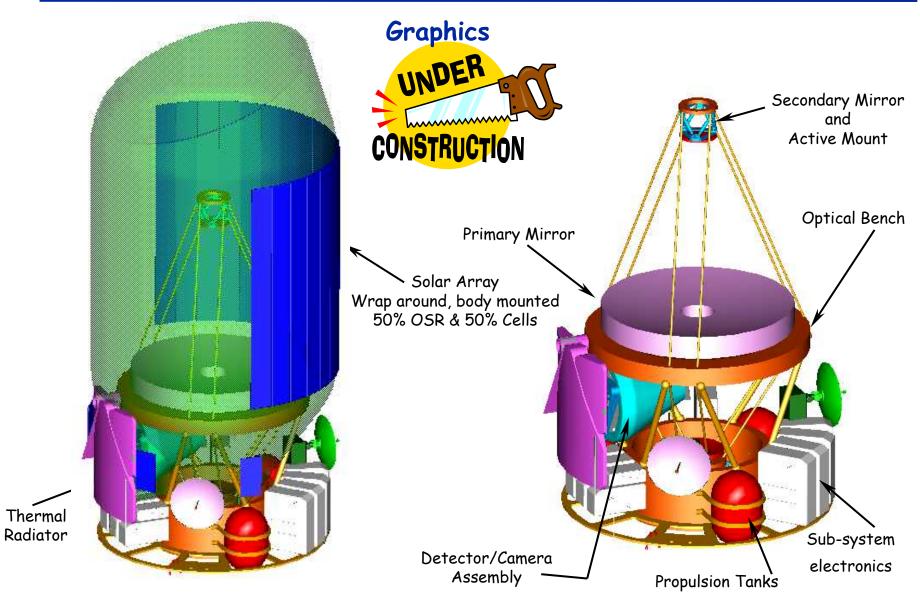
- Mission Profile
- Spacecraft and Subsystems
- Optical Telescope
 - Telescope Packaging (TMA-63)
 - Telescope Thermal
 - Camera (passive) Thermal
- Status
- R & D Manpower and Schedule
- Summary

SNAP Mission Profile

- Delta 3/4 Two Stage Launch from KSC
 - 200km x 25 Re Injection Orbit at 28°
- Hydrazine Boost to 3 day 2.6 x 25 Re
 - Phased for near Ecliptic Plane Orbit
 - Our plus: The perigee is Stable Over Berkeley!
- Commissioning Phase several overlapping weeks
 - Spacecraft Turn On Activities
 - Structured Cool Down of the Telescope
 - slow roll or auxiliary rear array
 - Degassing & Dry Out Period
 - Optics Turn On Open Cover, Focus, etc.

SNAP Mission Profile

- Mission / Science Operations
 - Alternate N/S Ecliptic Pole Observing Plan
 - Observing is suspended below 9 Re (radiation issues)
 - High Speed Data Down-Link & Onboard maintenance
- Ops Plan is Intended to be PRIMARILY a Routine Survey Mode
- and more comments...


SNAP BUS PHILOSOPHY

- Passive Cold Biased Bus & Baffle / Warm Optics
 - Active Coolers are not Mature, Cryogen's are Short Lived
 - High Earth Orbit allows Passive Cooling
 - Build, Test, and Fly Warm Optics (like HST)
 - Compact Telescope with the Longest Light Baffle that fits!
- Generic and Rigid Spacecraft
 - One Mission Thermal Attitude ...near Sun Line Normal Viewing
 - No Appendages and minimal mechanisms
 - On Board Angular Momentum Compensation
 - Noise Isolation at the Sources
 - Generic RSDO spacecraft no R&D needed

Generic Spacecraft Packaging

from GSFC - IMDC study

Needs Tertiary View...

KSOO bus Opinons

(Rapid Spacecraft Development Office at GSFC)

- Ball Aerospace BCP 2000, Bus dry mass = 608 kg
 - Payload Power (OAV) (EOL) / Mass Limit: 730 W / 380 kg
- Spectrum Astro SA 200HP, Bus dry mass = 354 kg
 - · Payload Power (OAV) (EOL) / Mass Limit: 650 W / 666 kg
- Orbital StarBus, Bus dry mass = 566 kg
 - · Payload Power (OAV) (EOL) / Mass Limit: 550 W / 200 kg
- Lockheed Martin LM 900, Bus dry mass = 492 kg
 - · Payload Power (OAV) (EOL) / Mass Limit: 344 W / 470 kg
- Orbital Midstar, Bus dry mass = 580 kg
 - · Payload Power (OAV) (EOL) / Mass Limit: 327 W / 780 kg
 - Mission Unique Spacecraft Structure and several significant subsystem upgrades are required.
- · IMDC's (GSFC) Risk Assessment & Technologies
 - Risk on spacecraft bus is generally low, with well-understood technologies and readily available components
 - No significant technology development required for bus
 - Higher risk on instrument, especially on the enormous CCD cluster

Baseline Configuration & Rationale

- ROM MASS: 700 kg (instrument); 500 kg (bus); 350 kg (hydrazine)
- ROM POWER: 250 w (instrument); 250 w (bus)
- MOSTLY GENERIC SUBSYSYEMS
 - EPS (electrical), C&DH (command & data handling), TCS (thermal)
- MISSION UNIQUE SUBSYSTEMS
 - ACS (attitude control), SMS (structure & mechanisms), RF (Comm)
- Evolving SNAP Bus Configuration
 - 3-axis stabilized, 4+ Reaction wheels, tactical IRUs, no torquer bars
 - Sun side w/ isolated body mounted solar arrays & anti-sun side radiators
 - Standard mono-Hydrazine propulsion, manifold & multiple tanks for slosh
 - ~ 100+ kg to raise perigee to perigee, deplete large tanks if needed
 - ~ 10 kg/yr for station keeping in small tanks
 - ~ 100 kg for Post Mission Disposal... or small Solid Motors
 - High speed data down link near perigee to Berkeley ground station.

ACS Driving Requirements

· Pointing Accuracy

» Yaw & Pitch : 1 arc-sec (1σ)

» Boresight Roll: 100 arc-sec (1σ)

Attitude Knowledge

» Yaw & Pitch : $0.02 \text{ arc-sec } (1\sigma)$

» Boresight Roll: 2 arc-sec (1σ)

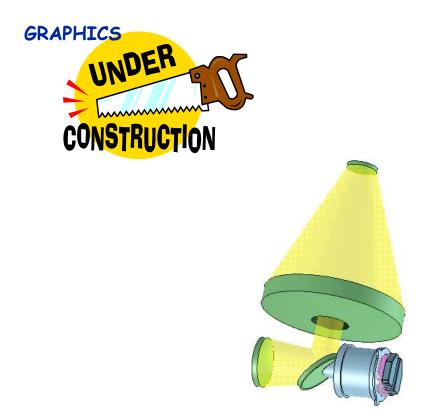
· Jitter/Stability -Stellar (over 200 sec)

» Yaw & Pitch : $0.02 \text{ arc-sec } (1\sigma)$

» Boresight Roll: 2 arc-sec (1σ)

- · Sun Avoidance VERY RELIABLE SAFE HOLD! ...and Shutter
- Earth & Moon Avoidance (mostly a result of Chandra-like orbit)

ACS Issues and Concerns from IMDC



Jitter

- Isolate fundamental wheel frequency through detailed analysis from manufacturer
- Must tune wheel isolators type, size and interface
- Flexible Mode Analysis
 - Require extensive analysis to avoid control/structure resonance
- · Solar Wind Tipping, given the Large Baffle Cp-Cg offset
 - Smaller offset will minimize thruster firing frequency and propellant required for daily momentum unloading (est. 30 Nms wheels)
 - Offset will migrate with mission life, will get better with fuel depletion
- · Fuel Slosh disturbance analysis will be needed
 - Minimize fuel tank Cg offset
- 3 σ Pointing jitter values
 - Use current Star tracker with a very accurate Kalman Filter
 - Augment Star Tracker data with instrument data for fine pointing
 - May need to replace gyro with SKIRU-DII
- Use of Instrument guide data
 - Possible mitigation by use of more sophisticated focal plane-sensors
 - Non-white and non-bias errors must be carefully accounted

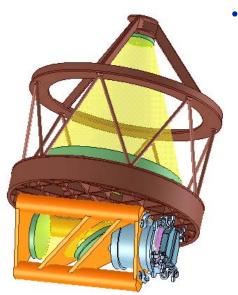
TMA-63 Optical Prescription

TMA-63 LIGHT PATH

- primary
- secondary
- folding flat
- tertiary
- Camera & 140K Dewar

· add PASSIVE 140K CAMERA DEWAR

DESIRED OTA COMPOSITE properties for the ppm Optics need

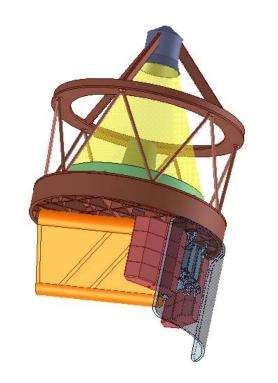

- Cyanate Ester matrix for low CME (moisture)

- High Modulus & Conductivity Fibers for sub-ppm/°C stability

- On Orbit Temperature Controlled OTA Structure

- Quasi-Isotropic Patterning

- These are today's technology


· add SECONDARY STRUCTURE low CTE - GFRP

· add OPTICAL BENCH low CTE - GFRP

- · add "OPTICS CAVITY" BELOW low CTE GFRP
- WITH THREE STIFF METERING BEAMS

· add STRAY LIGHT SECONDARY "LAMPSHADE"

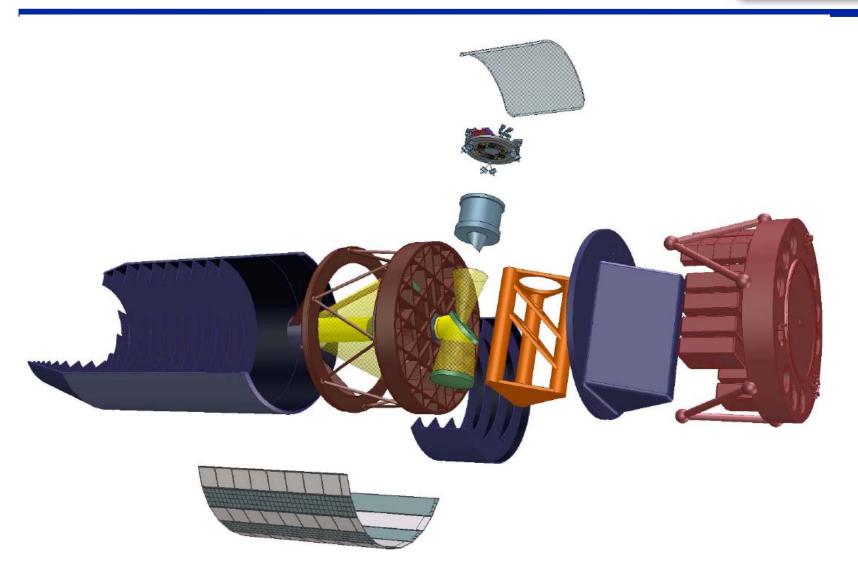
· add STRAY LIGHT PRIMARY CENTER HOLE "STOVEPIPE"


· add PASSIVE GIGA-CAM RADIATOR

· enclose OPTICS COFFIN

· add CCD FRONT END ELECTRONICS

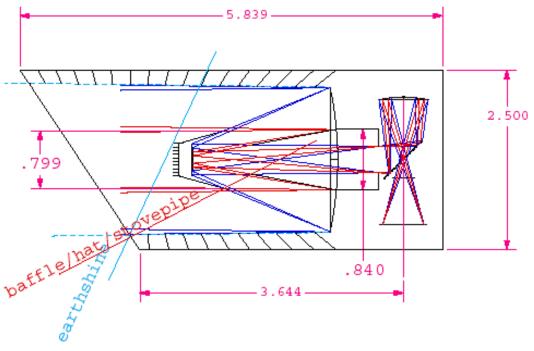
· add THERMALLY ISOLATED SOLAR ARRAY PANELS



add STRAY LIGHT BAFFLE

· add OVERALL MLI THERMAL BLANKETS

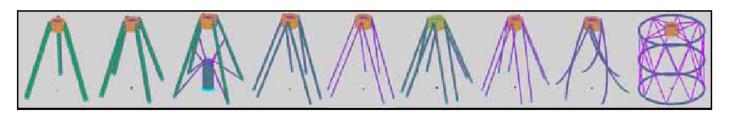
add GENERIC SPACECRAFT



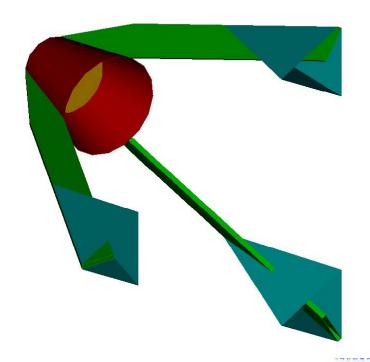
EXPLODED VIEW

STRAY LIGHT BAFFLE

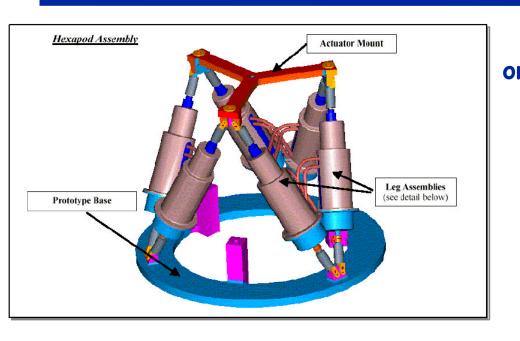
Not allowing light into stovepipe:



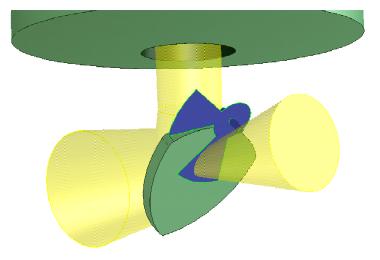
- Ordinary Precision (±mm's) Aluminum Shell Structure would be Adequate
- The necessary Knife Edge Geometry is established
 - Minimum of two diffraction bounces to Primary
 - Longer Baffle -> Lower Obscuration
- 'One Shot' Split Lightweight Front Doors are a Viable Option!



Secondary Metering Structure


	podi	Quadrupod	Cross-Braced Quadrupod
# legs	3	4	4
outside diameter	112	102	67
wall thickness	1.0	1.0	1.0
obscuration	8.6	10.4	6.8
interference spikes	6	4	4
lowest violin mode	197	180	
lowest global mode	35	-5	34
mass of composite	6.4	7.7	8.9
mass	39.7	41.3	16.1
total mass of metering structure	46.1	49.0	25.0

HPS-113005-0001 / SNAP Meeting, LBNL, November 3rd, 2000 / E.P.


OTA Active Mechanisms

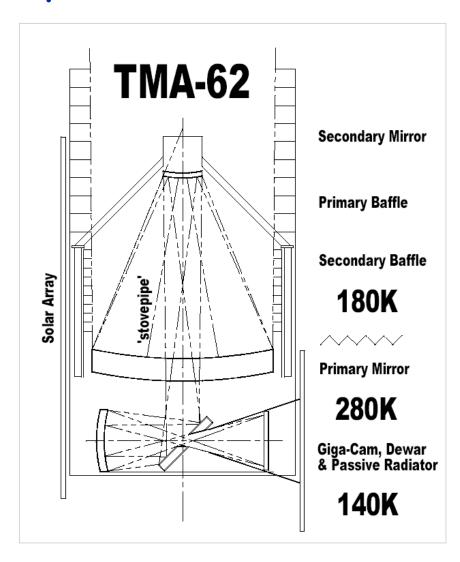
HEXAPOD ADJUSTOR or Secondary Mirror "focus knob"

- micron steps & mm range needed
- several such designs have flownHST, Fuse, & more...
- Fast Steering Actuators in SeriesPiezo's or Magnetostrictive

SHUTTER MECHANISM

"Bow-Tie" style is attractive

- more uniform exposure times
- momentum compensation planned 0.1 ± 0.005 sec timing anticipated
- · PRESENT BASELINE IS NO MOVING FILTER WHEELS!
- · THE FAST STEERING MIRROR (secondary) IS AN OPTION
- · TERTIARY HEXAPOD ADJUSTER IS ALSO AN OPTION


OTA THERMAL

OPTICS: Build, Test, & Fly Warm... like Hubble!

KEY DESIGN FEATURES

- High Earth orbit (HEO) to minimize IR Earth-glow loads
- GaAs cell OSR striping of the (hot) solar array panels
 - Front surface heat rejection OK
 - Optical Solar Reflectors are back silvered Quartz tiles (α ~ 8%, ε ~ 80%)
- · Low emissivity silvered mirrors
- Thermal Isolation mounting and MLI blanketing

OTA WARM OPTICS THERMAL ROM

LARGE STRAY LIGHT BAFFLE (~180K)

- 478 w Absorbed Sunlight if MLI covered ($\alpha^* \sim 2\%$)
- 100 w Telescope Internal Parasitics and 5m² Solar Array coupling (MLI behind)
- < 62w> Radiant Loss from Baffle Outer Cylinder (ε * ~ 2%)
- <480w> Radiant Loss from Baffle Open BB End (large axial Temp gradient)

PRIMARY MIRROR HEATER LOAD AT 280K

- < 6w> Radiant Loss to Space (ε ~ 2%)
- <14w> Radiant Face Loss to 180K Baffle (ε ~ 2%)
- < 4w> Radiant MLI covered Edge Loss to 180K Baffle ($\varepsilon^* \sim 1\%$)
- < 1w> Radiant Loss from Central MLI Stovepipe BB hole

SECONDARY MIRROR HEATER LOAD AT 280K

<<10w> Radiant and Conductive Losses to Baffle and Structure (Est.)

TBS HEATED SECONDARY STRUCTURE (black MLI covered)

OTA CAMERA THERMAL ROM

PASSIVE GIGA-CAM 140K DEWAR THERMAL BUDGET

- 32 w Radiating Capacity from 2m² unobstructed 130K Radiator to Space
- < 4w> Radiator Thermal Isolation Mounts & MLI behind

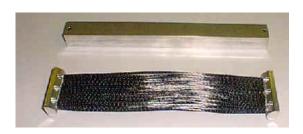
RADIANT COUPLING LOSSES

- < 6w> CONICAL Cosmic Ray Shield MLI outside ($\varepsilon^* \sim 1\%$)
- < 4w> Open End CONE Blackbody Loss to warm Coffin Cavity

CONDUCTIVE COUPLING LOSSES

- < 1w> Giga-Cam Thermal Isolation Mounts
- < 2w> Dewar Thermal Isolation Mounts and Cold Plate Gaskets
- < 1w> Electrical "Flex-Print" (~ 5800 traces)
- < 6w> Average Electrical Power Dissipated in CCD's
- ~ 8w ROM MARGIN
- ~10°C Gradient allocated for Cold Plate, Radiator, and Flex-Links

OTA THERMAL



SOME "KEY ITEM" THERMAL HARDWARE EXAMPLES

HESSI Sapphire & S-LINK
High Conductivity Thermal Strap
~ 700 layers Al Foil

8x higher Conductivity Graphite Fiber based Thermal Strap Assembly


Mariner 6&7 (Mars '69)
IR Spectrometer
Joule-Thompson Cryostat
Thermal Isolation Mount

OTA THERMAL

SOME RECENT THERMAL HARDWARE EXAMPLES

HESSI S-Glass Thermal Isolation
Strap Assembly
~140mW loss for the set at 200° \(\Delta T \)

HESSI COLD PLATE ASSEMBLY supports 38 kg Ge Detector Assembly under Vacuum

HESSI DETECTOR ASSEMBLY
Extensive Thermal Isolation
used to achieve 75K with only
~3W of active cooling

OTA THERMAL +

SOLUTIONS FOR COMMON CONTAMINATION CONCERNS

- · Moisture / Frost is a Primary Culprit
 - FEP teflon MLI blanketing is a stock item (0.005% hygroscopic)
 - Cyanate Ester resins absorb ~7ppm water vs ~70 ppm for epoxies
 - Concentric gold plated cans tend to be heavy & less efficient
- · "Structured" Cool-down Approach
 - Focal Plane Camera is the last item to cool-down in LEO
 - Residual moisture can be frozen into structure & blankets
- Preferred Vent Paths & Cover Strategies are Frequently Used

SNAP Engineering Requirements

Does this make sense... (its long & boring!)

engineering STATUS

- · CAMERA needs and viable approaches are known and actively pursued
 - Thermal management calls for continuing vigilance
- · TELESCOPE packaging options and requirements are well defined
 - Several Light-weighting Options are actively being Considered
 - Our team's desire is to maintain technology/vendor flexibility
- ·SPACECRAFT can be a generic RSDO (interagency) procurement
 - Instrument ACS interactions calls for continued clever thinking
- · MISSION...

R&D ACTIVITIES

- · Expand Instrument and Spacecraft Project Office Infrastructure needed to properly 'Architect' the SNAP Mission
 - Typical Instrument Engineering Team

Instrument Manager, Structural, Thermal, Cryogenic, Mechanisms, Optics, Quality Assurance, Contamination, Configuration Management, Procurement

— Typical Spacecraft Engineering Team

Bus Manager, Integration & Test manager, Ground Segment manager, Launch manager, Structure and Mechanisms, Thermal control systems, Attitude control systems, Flight Dynamics, Electrical power systems, Command & Data Handling, Telecommunications, Flight Software

- ·Develop the "Proof of Concept" Spacecraft & Instrument Designs
 - Detailed Camera and Dewar Mechanical, Thermal, and Electrical Designs
 - Partner with Industry(s) to develop Telescope and OTA Structure
 - Develop Compatible Primary, or the Load Bearing Spacecraft Structure
 - Conceptual Design of Test / Ground Support Equipment needs

R&D ACTIVITIES

- Design Activity Flow Downs, or Design Related Activities
 - Preliminary Coupled Loads Analysis (includes Launcher)
 - Preliminary Observatory Level Integrated Thermal Model
 - Generate Viable Optics Test plan, plus the general I&T plans
 - Develop draft Instrument & Spacecraft Interface Documents
 - Science and Mission Requirements Review(s)
 - Preliminary Failure Modes (FMEA) and Probabilistic Risk (PRA)
- · Generate the Long Lead Item Optics Procurement Plan
- · Generate an EM Spacecraft & Telescope Plan and Schedule

R&D SCHEDULE

SUMMARY & COMMENTS

- Delta 3/4 LV Is Not Mature Today, but NASA Is Committed.
 - Delta 4 build in process at KSC for EUTELSAT ...summer '02
- · SC Bus has its Challenging Aspects, but No New Technology
- · Composite OTA Structures Are Well Understood and this Technology continues to advance
- · SNAP has several Options for Lightweight, Low CTE Mirrors
 - (later by M. Lampton)
- · Passive Thermal Approach is Viable for Camera
- · Build, Test, & Fly Warm Is an Appealing & Proven Approach